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ABSTRACT: The most widely used deterioration model today is one that is based on the Markov chain theory.
. In this paper, the unnecessarily restrictive requirement for exponential or geometric holding times of the
"‘Markov process is relaxed in a more general stochastic model called semi-Markov process. Examples using
NBI data (USA) are provided which illustrate this new approach. )

1 INTRODUCTION

The reliability of a bridge declines with time due to
the degradation of the material and the increase in
vehicular load. To effectively manage an existing
bridge stock requires that the bridges be monitored
throughout their life spans.

Bridge deterioration modeling is thus a very
important activity in bridge management system
(BMS) development. It involves establishing a
relationship between the bridge performance and
time. This relationship may be assumed to be
deterministic or stochastic in nature. A deterministic
deterioration mode! assumes that future bridge
performance (or its expected value) is known with
certainty.  In this case, the performance-time
relationship is described by a mathematical equation
relating  either the performance or expected
performance with time. A commonly used
deterministic model is the repression function
obtained by doing a regression analysis on historical
bridge data (Veshosky et al 1994}.

A stochastic model, on the other hand, treats the
deterioration process as a stochastic process. The
state-of-the-art stochastic model has been based on
the Markov chain theory (Jiang & Sinha 1990,
Cesare et al 1992). In the Markov-chain
deterioration model, the performance level 1is
specified as discrete states. The performance of the
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bridges changes from one state to another in
accordance with a set of transition probabilities pj.
py 1s defined as the probability for the bridge to
move from state i to state j in one step; which may be
one year; or two years etc. : ‘

The Markov-chain bridge deterioration model
often assumes that a bridge can either remain in the
current state or deteriorate to the next lower state in
one step. Also, the worst state & in a state space of
{1, 2, ..., N} is considered an absorbing state; which
means that once the process enters the state it will
never leave it.  The stochastic nature of the
deterioration process is thus characterized by the
transition probability matrix of this format:

o l-p 0
0 P, 0 0
P=|: : : : (1)
0 0 Pur 1= Py
0 0 0 1

where p;, i =1, 2, ..., N represents the probability of
remaining in the ith state in the next step. Notice
that py is equated to 1 since N is an absorbing state.
There is now wide acceptance of the use of
Markov-chain deterioration models but it is
important to investigate the validity of the Markov
chain assumptions in bridge deterioration modeling.



First, the Markov chain theory stipulates that the
transition probabilities depend only on the current
states and not on how the current states had been
reached ("Markov property”). Second, the transition
probabilities are constant over time - a property
called “time homogeneity.” Implicit in the
homogeneity property of the Markov process is the
requirement of exponential (for continuaus time) or
geometric (for discrete time) distributed holding
times. Holding time is the amount of time a process
sojourns in one state before moving to ancther. The
exponential and geometric distributions possess the
so-called “memoryless” property. This property,
used in the context of bridge deterioration, suggests
that the probability for a bridge to move from its
current state to another more deteriorated state does
not depend on how long it has been in the current
state. Regardless of the validity of this assumption,
the requirement of exponential or geometric
distributions is unnecessarily restrictive. This
requirement for exponential or geometric holding
time in the Markov process is relaxed in a more
gener stochastic model called semi-Markov
process. This paper investigates umportant aspects of
bridge deterioration modeling using the semi-
Markov theory.

2 SEMI-MARKOV BRIDGE DETERIORATION
MODEL

2.1 Semi-Markov Process

A semi-Markov process is a class of stochastic
process which moves from one state to another with
the successive states visited forming a Markov chain;
and that the process stays in a particular state for a
random length of time the distribution of which
depends on the state and on the next state to be
visited (Ross 1970).

To better understand this concept, the semi-
Markov process could be conceived as a stochastic
process governed by two different and independent
random-generating mechanisms. When the process
enters any state i, the probability of it moving to the
state j in the next transition is specified by the
transition probability p’;. Once the successor state
was determined and prior to the transition the
process stays in the current state ¢ for a duration 77
which is dictated by the holding time probability
density function Ay(f). For discrete-time models
hy(m) will be used in place of A,(0).
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From the above discussions, it is obvious that one
way lo describe a semi-Markov process would be to
use the transition matrix P’ and the holding time
matrix H(f):

P’:{pzy} j=132: ...,i\(;j=1,2, "'7;\;
H@) = { hy0) ) £20 @)

2.2 Bridge Deterioration as a Semi-Markov Process

We now explore how to model bridge deterioration
as a semi-Markov process. A sample function of the
deterioration process (under no human intervention)
is shown in Fig. 1. It shows that a bridge would
begin with the best state, remain there for a period of
time before degrading to the next worse state; so on
and so forth. Notice that the sample function is a
monotone non-increasing function.  Under this
condition, p’y = 1 for j = i+] and p’; = 0 for all other
values of ; except the final state, M. It is assumed
that the last state N is an absorbing state and thus
2 wwvis 1. The transition matrix is accordingly given
as
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Fig. 1 A Sample Function of the Deterioration
Process

The modeling of bridge deterioration process
(under no human intervention) using semi-Markov
process is thus reduced to one of determining the
holding time distribution hy(f). Chapter 4 will



discuss a procedure to derive the distributions from
historical bridge data.

In the semi-Markov vprocess formulation, a
Markov chain process could be regarded as a special
case of the semi-Markov process by requiring real
transition between two different states and specifying
both the transition probability p’; and the holding
time it takes for such transition. As an illustration,
the Markov chain deterioration process in Eq. (1) can
also be represented by Eq. (4) and Eq. (5) (Ng 1996).

o190 -0
0 0 1 « 0

prsll B oG e 4)
00 0 1
00 0 1
0 2™(-p) 0 0
0 0 e D) 0

H(m)=| : S : (3)
0 0 - 0 PN—in(l—PN-J
0 0 ) i

The holding times Au/{m), i = 1, ..., N-1 are

geometric distributed.

3 PERFORMANCE PREDICTION AND SEMI-
MARKOV DECISION PROCESS

In many existing bridge management system (BMS)
applications, for example, Pontis (Golabi 1993),
bridge deterioration models are used in:

1. the prediction of future performance

“Given the current status of the bridges in the
network what will be future needs in, say, five years’
time?”  To answer this management question
requires the prediction of future bridge performance
for the whole network.

il. the construction of the decision model

“What is the optimal improvement policy for the
entire network which would minimize the bridge
costs?” A policy is a rule which prescribes decisions
corresponding to each performance state of the
bridge. Mathematically it is a relationship between
the state space of the bridge and the decision or
action alternatives:

R=A Ay ey, o i 1 (©)

where A4, is the decision/action prescribed for state i.

3.1 Traditional Markovian Modeis

With deterministic deterioration models such as that
using the regression functions, bridge performance
prediction and decision model are rather straight
forward and will not be further discussed in this
paper. The reader is referred to Jiang & Sinha
(1993).

For stochastic deterioration models, future
performance is described by a state probability
vector which specifies the probability of the bridge
being in each performance state. For Markov-chain
deterioration model, performance of the bridge
network at a future time m is calculated by using this
relationship:

mm) = m0) x { py }" )

where 7(m) is the state probability vector at any time
m and m(0) is the initial state probability vector. Eq.
(7) says that the probability distribution of the state
in m years’ time is the matrix product of the initial
distribution and the transition matrix raised to the

power m. The matrix { py }= is called the m-step

transition matrix or interval probability matrix.

In determining the optimum policy for bridge
improvement the traditional approach uses the
concept of Markovian decision process (Golabi
1993). The decision process assumes that at every
fixed interval an action must be chosen. The action
belongs to a finite set of feasible actions for that
state; which include the do-nothing action, various
degrees of rehabilitation and replacement. If the
process is In state 7 and action & is chosen, then
1. animmediate expected cost of #C; is incurred;

ii. the process next evolves to another state in

accordance to the transition probability &p;.

The decision process is therefore a result of
human intervention (in the form of decisions) and
deterioration process. The optimality equation is
given as

N
vi(n+1)= mkin["C; +1 Z g VJ-CH)} )

J=1

in which v{(n+1) is defined as the present value of the
costs from the remaining »+1 time periods if the
system is now in state i and the optimal selection of
alternatives has been performed at each stage
through stage n. 77 is the discount factor so that the
present value of one unit of cost » periods in the
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future is 7. Tn Eq. (8), the first term in the square
brackets is the cost consequential to the first
“transition” or rather, the first “period”; the second
term is the expected total discounted cost of the
system evolving over the remaining » periods.

For infinite planning horizon where n is very
large, h_1>n v;(n)=v;. Eq. (8) is thus re-written as

h{
R k
v =minl “C; +7 ) pg-ij ©)

J=1
3.2 Proposed Semi-Markov Model

A complete formulation of the semi-Markov model
analogous to that of the Markov model have been
presented by Howard (1971). His formulae have
been adapted here to suit the bridge deterioration
process.

For performance prediction (under no human
Intervention), an equation analogous to that for the
Markov chain is given in Eq. (10).

5= #0) x { vi) } (10)

{ Wi(r) } 1s the interval probability matrix much like
{ py }" in Eq. (7). w(r) is the probability that the
process will occupy state j at time ¢ given that it
entered state 7 at time zero. Now, at time ¢ after
entering state / the process would either stay in the
current state / or move to a lower state /. Consider
as the time for the first real transition to occur. If the
process has moved to a lower state, then v< ¢, In this
event, after the process has moved to the next lower
state at time 7, it moves to state j in the remaining
time (#-7 ). The interval probability is thus given as

wf;,-<r)=ﬁh,-Hl(r)w,-Wcr—r)dr, i# an

If the process has remained in state i throughout
the time # then 7> . The interval probability is thus
the complementary of the probability that the process
will move out of the current state (viz., to move to
the next worse state) within time .
w=1-"hies(t),  j=; (12)
where the notation *h;:,(r) is used to denote the
cumulative distribution function of the holding time.

For determining optimum improvement policy,
the Markovian decision process can be generalized to
a semi-Markov decision process by (Puterman 1994):
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1. allowing or requiring the bridge manager to
choose an action whenever the system state
changes, and not at fixed intervals;

1. modeling the system evolution in continuous time
and not in discrete time;

u1. allowing the holding time at a particular state to
follow an arbitrary probability distribution rather
than a geometric distribution.

Whenever the system enters a state i, its successor
state j is selected according to the transition
probability p’y. The duration of staying in state i
before moving to another state j is dictated by the
holding time density function A/(r). While the
process occupies state 7, it lays out maintenance
expenses at a rate AM(u) for a duration u after
entering state . Further, when the process leaves a
state / to enter state j, there will be a lump sum of
cost associated, Cy. Now in a semi-Markov decision
process, whenever the system enters a state the
probability and cost function governing departure
from it are not fixed but dependent on the
action/alternative selected. Thus, associated with the
it alternative action in state i will be transition
probabiiity, &p 'y, khy(r), &M (u), ¥Cj.

Define a discount rate &> () so that a unit quantity
of money at time ¢ in the future has a value of e
today. For an infinite planning horizon the
optimality equation is given by Howard (1971) as

N 4]
V@) =r(e)+ Y py [ hy (), (@) (13)

j=1 0

where v{a) is the expected total cost when the
system just enters state /; corresponding to a rate of
a. r{a) is the cost incurred after the first transition
and is given by

w
r{o) = Zp; -Enhij(‘c) [fg”‘m M (w)du + e_afcy}aﬁ:
=1
(14)

The optimal policy could be obtained by seeking a
solution to the optimality equation, Eq. (13). An
algorithm known as the ‘Policy Improvement’
method has been proposed by Howard (1971) for its
solution.

The main strength of the semi-Markovian
decision processes over the Markov analog lies in the
use of random holding times. By treating the holding
times as random rather than as fixed regular intervals
the semi-Markov decision processes could
incorporate the “time-factor” into the model. One
example is the consideration of maintenance cost



which is inherently time-dependent; another is the
consideration of the time needed to effect an
improvement of states. In the Markovian decision
process, the mmprovement action is assumed to take
effect immediately.

However, due to the absence of “memoryless”
assumption 1 the holding times, it is necessary to
assume that all intervening actions must take place at
the points in time when the state changes.

4  DERIVATION  OF
DISTRIBUTION

HOLDING  TIME

The above application depend on the ability to derive
the holding time distributions pertaining to each pair
of adjacent states. Consider Fig. 1, if the time to
reach each state { (from state 1), viz., 7T; is known
probabilistically then it may be possible to determine
the distributions for holding times 7} by taking the
difference of T; and 7;. First is the issue of finding
the probability distributions of 7;. Second is the

jesue of derivino the holdine time distributione from
issue of deriving the holding time distributions from

the distributions of 7. Each of these two issues will
be discussed in the following.

4.1 Time to state i T;

The time to reach a state T; could be conceived as the
time to failure or failure time. “failure” is used here
to denote a distinct event, in this case, the reaching
of the performance level represented by state ;. The
study of failure time has been the subject of a
statistical analysis called survival analysis (Lawless
1990).

In traditional applications, failure time data is
obtained from /ife festing (in industrial applications)
ot clinical irials (in medical applications). In either
cases, a specific number of the subjects of interest
are observed for a period of time to obtain their
individual times to failure (or time to the relapse of a
certain decease). It is not uncommon to find that
some of these items on test have been lost to follow
up the study or have continued to survive at the end
of the study period. As a result, the failure times of
these subjects are not observed. The observations
are said fo be censored. Uncensored observations of
failure times are called complete observations.

Bridges are not subject to life testing for obvious
reasons. A procedure proposed by Ng and Moses
{1996) use bridge inventory data for survival
analysis. For this purpose, two data elements in any
bridge inventory data are of paramount importance:

the current performance level and the corresponding
age when the performance is observed. The data is
treated as if obtained from a life test in which the
construction of a new bridge is regarded as an entry
of the bridge in the life test. This is equivalent to
having all the bridges to start simultaneously in the
“life test” but to terminate the study randomly by the
observation time. In the context of life testing, the
time of observaticn for each bridge can be viewed as
a censoring fime. It is at the time of observation that
one would discern if there is a complete or censored
observation.

If the bridge performance equals the state defined
as failure there is a complere observation. If instead
it was found, at the time of observation, that a bridge
had not reached the performance state then the
observation is considered right-censored.  This
observation though incomplete is useful for it
indicates that the failure time of the bridge goes
beyond its present age. Further, if a bridge had
already surpassed the state at the time of censoring
the observation is lefi-censored. In this case, the
Jailure time of the bridge is less than or equal to the
age. By successively defining “failure” as the
performance states i = 2, 3, ..., ¥V the time to reach
each state (from state 1) can be derived using the
procedure discussed above,

4.2 Holding time

Next is to determine the holding time distributions
from knowledge of the distributions of 7, and T}
Consider a difference of two arbitrary random

variables Z = X - ¥, the PDF of Z is given by

(15)
(16)

f2@) = [ fopx—2)d

or Ji Sxr(y+2z,)dy
The joint distribution of X and Y is given by

fx,r(x?}"):fy(}’)'f,ﬂr(xay) (17)

in which fyp(x]y) is the conditional distribution of X
given Y. The PDF of Z is thus given by

f2(@) = [ fy(x=2) fyp(x,x - 2)dx (18)

Notice that the integration in Eq. (18) starts at z.
This is because x must be greater than z in order that
fr(x-z) is positive-valued.
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The object now is to derive an expression for the
random variable Z from the PDFs of X and ¥. It is
noted from Eq. (18) that in order to do so
information about the joint distribution of ¥ and ¥ is
needed. However, the records in most bridge
agencies are often not long enough to provide
reliable information about the joint distribution. An
assumption has to be made. For simplicity it is
assumed that the number of (real) transitions at an
epoch of the bridge deterioration process follows a
nonhomogeneous Poisson process (NHPP) quite
similar to a Weibull process. By treating the
counting process as a quasi-Weibull process the
PDF of Z could be obtained.

Some brief discussions on the Weibull process
are in order. A Weibull process is defined as a
nonhomogeneous Poisson process (NHPP) with an
intensity function equals to the Weibull hazard
function (Engelhart 1978) For a Weibull process.
the conditional occurrence time of the second event,
given the occurrence time of the first event, follows
a truncated Weibull distribution with truncation
point at the first occurrence (Engelhart 1978).
Accordingly, the conditional density function for a
Weibull process is

LY

oy -exp[— ax”]

o
fxw(xiy): , O<y<x<w

o]
(19)

Consider the present problem where ¥ is Weibull
* distributed with parameters (a, x1) and X is Weibull
distributed with parameters (cs, ). It is assumed
that the counting process of the number of
transitions follows a quasi-Weibull process with the
conditional distribution fyy(x[y) given by

]
(229 SP AL exp[— " ]

f,ru'(x'J") =

, 0<y<x<ew
exp[—azy"z]

(20)
Eq. (20) is modified from Eq. (19). Using Eq.

(18) the following cxpression is obtained for the
PDF of Z:

Ky —1

exp[ﬁal(x—z)"]

0 sk (Ko (x—2)5 71y
fz(2)= _[n exp[—otg(x—z)nz]

-exp[—ot,x* Jdx
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=00 K K, F(x gt e
-exp[“a!(x—z)’c‘ — o, [x® —(x —2)* ]}dx
21)

By letting ¥ = T, and X = T4/, the PDFs of the
holding time, A.,(r) for i = 1, 2, ... N can be
computed using Eqg. (21).

5 RESULTS
5.1 Indiana Example

The 1991 National Bridge Inventory (NBI) data from
the state of Indiana, U. S. had been analyzed using
the methods described in Chapter 4. A condition
rating system from 9 (state 1: “best” condition) to 3
(state 7: “worst” condition) had been used. Because
of the mathematical complexity of the formulation, a
computer software, Mathematica (Walfram 1991)
had been used to solve some of the equations
numerically.

TABLE 1 Interval Probabilities, d(m):

m = | year

0.923 0.077 0.000 0.000 0.000 0.000 0.000
0.000 0.983 0.017 0.000 0.000 0.000 0.000
0.600 0.000 0.984 0.016 0.000 0.000 0.000
0.000 0.000 0.000 0.981 0.019 0.000 0.000
0.000 0.000 0.000 0.000 0.975 0.025 0.000
0.000 0.000 0.000 0.000 0.000 0.99¢ 0.010
0.000 0.000 0.000 0.000 0.000 0.000 1.000

m =2 years

0.785 0.213 0.001 0.000 0.000 0.000 0.000
0.000 0.964 0.036 0.000 0.000 0.000 0.000
0.000 0.000 0.968 0.032 0.000 0.000 0.000
0.000 0.000 0.000 0.962 0.037 0.001 0,000
0.000 0.000 0.000 0.000 0.950 0.049 0,001
0.000 0.000 0.000 0.000 0.000 0.980 0.020
0.000 0.000 0.000 0.000 0.000 0.000 1.000

m =3 years

0.627 0.368 0.005 0.000 0.000 0.000 0.000
0.000 0.942 0.057 0.001 0.000 0.000 0.000
0.000 0.000 0.951 0.048 0.001 0.000 0.000
0.000 0.000 0.000 0.943 0.055 0.002 0.000
0.000 0.000 0.000 0.000 0.925 0.074 0.001
0.000 0.000 0.000 0.000 0.000 0.569 0.031
0.000 0.000 0.000 0.000 0.000 0.000 1.000

m =4 years

0.473 0.515 0.012 0.000 0.000 0.000 0.000
0.000 0.918 0.080 0.002 0.000 0.000 0.000
0.000 0.000 0.934 0.064 0.002 0.000 0.000
0.000 0.000 0.000 0.924 0.074 0.003 0.000
0.000 0.000 0.000 0.000 0.900 0.098 0.002
0.000 0.000 0.000 0.000 0.000 0.958 0.042
0.000 0.000 0.000 9.000 0.000 0.000 1.000



m =5 years

0.340 0.638 0.022 0,000 0.000 0.000 0.000
0.000 0.892 0.105 0.003 0.000 0.000 0.000
0.000 0.000 0.916 0.081 0.003 0.000 0.000
0.000 0.000 0.000 0.903 0.092 0.005 0.000
0.000 0.000 0.000 0.000 0.875 0.122 0.003
0.000 0.000 0.000 0.000 0.000 0.947 0.033
0,000 0.000 0.000 0.000 0.000 0.000 1.000

Table 1 presents the interval probabilities for
concrete bridges which are obtained using Eq. (11)
and Eq. (12). Only five years’ result is presented.
For illustration suppose that the bridge has just
entered condition 8§ (state 7 = 2) the probability that it
is in state 7 (state j = 3) in 5 years’ time is given by
wa3(5) = 0.105.

Future bridge needs could be estimated by using
Eg. (10). For illustration, suppose that out of 1,000
bridges in the network, the number of bridges in
each category of the condition ratings from 9 to 3 is
80, 100, 220, 200, 300, 80 and 20. By interpreting
the percentages of bridges in each condition category
as the probability measures, this information can be
represented as

20)={0.08 0.10 022 02 03 0.08 0.02}

The number of bridges in each category after 5
years is given by

#(5) = 2(0). A5)

={0.08 0.10 022 02 03 0.08 0.02} %

(0340 0.638 0.022 0 0 0 0
0 0.892 0,105 0003 0 0 0
0 0 0916 0081 0003 0 0
0 0 0 0903 0.092 0005 0
0 0 0 0 0.875 0.122 0.003
0 0 0 0 0 0547 0.053

0 0 0 0 0 0 1

={0.027 0.140 0.214 0.199 0.282 0.113. 0.025}

The results show that in 5 years’ time the number
of bridges in condition ratings 9, 8, ..., 3 is 27, 140,
214, 199, 282, 113 and 25; respectively.

The interval probability matrix can also be used
to find the expected condition rating as given by

E[£]=a(0) ¥(m) { &, }

where { & } is the state space {9, 8,7,6,5,4,3 }T,
of superstructure condition ratings. This relationship

22)

is used to determine the expected condition rating at
each point in fime.

5.2 Comparisons of the Semi-Markov Deterioration
Model with Previous Studies

One way to compare the proposed semi-Markov
deterioration model with previous studies is to
compare the “average condition versus time”
relationship produced by each study. This
relationship is simply called regression function
here. The regression functions for semi-Markov
model were computed by using Eqg. (22) to compute
the average condition rating at each time point 7.
The regression functions thus obtained were
compared with three regression models estimated
using ordinary least square method.

All the three regression models were based on
Indiana data collected around 1988 and 1989.
Reconstructed bridges were not considered. In the
first model developed by Jiang & Sinha (1990), the
data was fit with a third-order polynomial function.
The regression functions were forced to pass through
condition 9 at time ¢ = 0. The second regression
model was produced by this author using Jiang et
al’s approach on Indiana’s 1991 NBI data.
However, instead of specifying the order of
polynomial function to fit the data, the “Stepwise’
procedure of SAS (1993) was used to pick the
variables for the model which are significant at 0.15
level; and thus deciding the order of the polynomial
function. This way, the forms of the regression
functions were not predetermined but dependent on
the data. This model was developed merely as a
“control” and will be so identified in the discussions
that follow. The third regression model was
obtained by Veshosky et al (1994). In this model,
the data was fit with linear combination of
logorithmic time and ADT.

Comparisons of all three regression models
(ordinary least square method) with that derived
from the semi-Markov model for steel bridges are
shown in Fig. 2. Because each of the three
regression functions (derived using ordinary least
square method) could have been also used to
produce the transition matrix for the Markov chain
mode} (Jiang & Sinha 1990, Cesare et al 1992), Fig.
2 is essentially a comparison between the Markov
chain model and the semi-Markov model.
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Fig.2 Steel Bridges of Indiana
Comparisons of various regression functions

Jiang and Sinha’s model maintain the “flat-S™
shape thanks to the specification for a third-order
polynomial function. In the case where the order of
the polynomial function was not specified (in
“control” model) a linear regression function was
obtained.

In general, Jiang and Sinha’s models tend to
predict shorter lives than by any other models; while
Veshosky’s model is just the opposite.  This
phenomenon is largely due to the distributional
forms which each approach has presumed. A third-
order polynomial function (assumed in Jiang and
Sinha’s model) would bring the curve down as the
time increases. Besides the advantages of a semi-
Markov deterioration model over existing models in
concepts and formulation efficiency, the regression
functions derived from the semi-Markov model
appear to be “most natural” because 1) they do not
presume any functional forms; 2) they are derived
from a stochastic model and 3) they remain within
the two extremes of cases found in Jiang et al’s
model and Veshosky et al’s model.

6 CONCLUSIONS

This paper has outlined the procedure to model
bridge deterioration as a semi-Markov process.
Application of the procedure on Indiana data and
comparisons of the results with previous
deterioration studies show that the proposed
methodology is reasonable. This procedure can also
be used for modeling load rating deterioration. Its
application is indeed not restricted to bridges but
other infrastructure facilities as well.
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